Equalities and relationships that involve sets and functions
This article lists mathematical properties and laws of sets , the set-theoretic operations of union , intersection , and complementation and the relations of set equality and set inclusion . It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The binary operations of set union (
∪
{\displaystyle \cup }
) and intersection (
∩
{\displaystyle \cap }
) satisfy many identities . Several of these identities or "laws" have well established names.
List of set identities and relations
Throughout this article, capital letters such as
A
,
B
,
C
,
{\displaystyle A,B,C,}
and
X
{\displaystyle X}
will denote sets and
℘
(
X
)
{\displaystyle \wp (X)}
will denote the power set of
X
.
{\displaystyle X.}
If it is needed then unless indicated otherwise, it should be assumed that
X
{\displaystyle X}
denotes the universe set , which means that all sets that used in the formula are subset of
X
.
{\displaystyle X.}
In particular, the complement of a set
A
{\displaystyle A}
will be denoted by
A
C
{\displaystyle A^{C}}
where unless indicated otherwise, it should be assumed that
A
C
{\displaystyle A^{C}}
denotes the complement of
A
{\displaystyle A}
in (the universe)
X
.
{\displaystyle X.}
For sets
A
{\displaystyle A}
and
B
,
{\displaystyle B,}
define:
A
∪
B
=
{
x
:
x
∈
A
or
x
∈
B
}
A
∩
B
=
{
x
:
x
∈
A
and
x
∈
B
}
A
∖
B
=
{
x
:
x
∈
A
and
x
∉
B
}
.
{\displaystyle {\begin{alignedat}{4}A\cup B&&~=~\{~x~:~x\in A\;&&{\text{ or }}\;\,&&\;x\in B~\}\\A\cap B&&~=~\{~x~:~x\in A\;&&{\text{ and }}&&\;x\in B~\}\\A\setminus B&&~=~\{~x~:~x\in A\;&&{\text{ and }}&&\;x\notin B~\}.\\\end{alignedat}}}
The symmetric difference of
A
{\displaystyle A}
and
B
{\displaystyle B}
is:
A
△
B
=
(
A
∖
B
)
∪
(
B
∖
A
)
{\displaystyle A\;\triangle \;B~=~\left(A\setminus B\right)~\cup ~\left(B\setminus A\right)}
and the complement of a set
B
{\displaystyle B}
is:
B
C
=
X
∖
B
{\displaystyle B^{C}=X\setminus B}
where
X
{\displaystyle X}
is the universe set .
A family
Φ
{\displaystyle \Phi }
of subsets of a set
X
{\displaystyle X}
is said to be an algebra of sets if
∅
∈
Φ
{\displaystyle \varnothing \in \Phi }
and for all
A
,
B
∈
Φ
,
{\displaystyle A,B\in \Phi ,}
all three of the sets
X
∖
A
,
{\displaystyle X\setminus A,}
A
∩
B
,
{\displaystyle A\cap B,}
and
A
∪
B
{\displaystyle A\cup B}
are elements of
Φ
.
{\displaystyle \Phi .}
[ 1]
The article on this topic lists set identities and other relationships these three operations.
Every algebra of sets is also a ring of sets [ 1] and a π-system .
Algebra generated by a family of sets
Given any family
S
{\displaystyle {\mathcal {S}}}
of subsets of
X
,
{\displaystyle X,}
there is a unique smallest[ note 1] algebra of sets in
X
{\displaystyle X}
containing
S
.
{\displaystyle {\mathcal {S}}.}
[ 1]
It is called the algebra generated by
S
{\displaystyle {\mathcal {S}}}
and we'll denote it by
Φ
S
.
{\displaystyle \Phi _{\mathcal {S}}.}
This algebra can be constructed as follows:[ 1]
If
S
=
∅
{\displaystyle {\mathcal {S}}=\varnothing }
then
Φ
S
=
{
∅
,
X
}
{\displaystyle \Phi _{\mathcal {S}}=\left\{\varnothing ,X\right\}}
and we're done. Alternatively, if
S
{\displaystyle {\mathcal {S}}}
is empty then
S
{\displaystyle {\mathcal {S}}}
may be replaced with
{
∅
}
,
{\displaystyle \left\{\varnothing \right\},}
{
X
}
,
{\displaystyle \left\{X\right\},}
or
{
∅
,
X
}
{\displaystyle \left\{\varnothing ,X\right\}}
and continue with the construction.
Let
S
0
{\displaystyle {\mathcal {S}}_{0}}
be the family of all sets in
S
{\displaystyle {\mathcal {S}}}
together with their complements (taken in
X
{\displaystyle X}
).
Let
S
1
{\displaystyle {\mathcal {S}}_{1}}
be the family of all possible finite intersections of sets in
S
0
.
{\displaystyle {\mathcal {S}}_{0}.}
[ note 2]
Then the algebra generated by
S
{\displaystyle {\mathcal {S}}}
is the set
Φ
S
{\displaystyle \Phi _{\mathcal {S}}}
consisting of all possible finite unions of sets in
S
1
.
{\displaystyle {\mathcal {S}}_{1}.}
Basic set relationships [ edit ]
Assume that
A
,
B
,
C
⊆
X
.
{\displaystyle A,B,C\subseteq X.}
Commutativity :
A
∪
B
=
B
∪
A
{\displaystyle A\cup B=B\cup A}
A
∩
B
=
B
∩
A
{\displaystyle A\cap B=B\cap A}
Associativity :
(
A
∪
B
)
∪
C
=
A
∪
(
B
∪
C
)
{\displaystyle (A\cup B)\cup C=A\cup (B\cup C)}
(
A
∩
B
)
∩
C
=
A
∩
(
B
∩
C
)
{\displaystyle (A\cap B)\cap C=A\cap (B\cap C)}
Distributivity :
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle A\cup (B\cap C)=(A\cup B)\cap (A\cup C)}
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
{\displaystyle A\cap (B\cup C)=(A\cap B)\cup (A\cap C)}
Identity:
A
∪
∅
=
A
{\displaystyle A\cup \varnothing =A}
A
∩
X
=
A
{\displaystyle A\cap X=A}
Complement:
A
∪
A
C
=
X
{\displaystyle A\cup A^{C}=X}
A
∩
A
C
=
∅
{\displaystyle A\cap A^{C}=\varnothing }
Idempotent :
A
∪
A
=
A
{\displaystyle A\cup A=A}
A
∩
A
=
A
{\displaystyle A\cap A=A}
Domination:
A
∪
X
=
X
{\displaystyle A\cup X=X}
A
∩
∅
=
∅
{\displaystyle A\cap \varnothing =\varnothing }
Absorption laws :
A
∪
(
A
∩
B
)
=
A
{\displaystyle A\cup (A\cap B)=A}
A
∩
(
A
∪
B
)
=
A
{\displaystyle A\cap (A\cup B)=A}
Intersection can be expressed in terms of set difference :
A
∩
B
=
A
∖
(
A
∖
B
)
{\displaystyle A\cap B=A\setminus (A\setminus B)}
Algebra of inclusion [ edit ]
The following proposition says that the binary relation of inclusion is a partial order .
Reflexivity :
A
⊆
A
{\displaystyle A\subseteq A}
Antisymmetry :
A
⊆
B
{\displaystyle A\subseteq B}
and
B
⊆
A
{\displaystyle B\subseteq A}
if and only if
A
=
B
{\displaystyle A=B}
Transitivity :
If
A
⊆
B
{\displaystyle A\subseteq B}
and
B
⊆
C
,
{\displaystyle B\subseteq C,}
then
A
⊆
C
{\displaystyle A\subseteq C}
The following proposition says that for any set
S
,
{\displaystyle S,}
the power set of
S
,
{\displaystyle S,}
ordered by inclusion, is a bounded lattice , and hence together with the distributive and complement laws above, show that it is a Boolean algebra .
Existence of a least element and a greatest element :
∅
⊆
A
⊆
X
{\displaystyle \varnothing \subseteq A\subseteq X}
Existence of joins :
A
⊆
A
∪
B
{\displaystyle A\subseteq A\cup B}
If
A
⊆
C
{\displaystyle A\subseteq C}
and
B
⊆
C
,
{\displaystyle B\subseteq C,}
then
A
∪
B
⊆
C
{\displaystyle A\cup B\subseteq C}
Existence of meets :
A
∩
B
⊆
A
{\displaystyle A\cap B\subseteq A}
If
C
⊆
A
{\displaystyle C\subseteq A}
and
C
⊆
B
,
{\displaystyle C\subseteq B,}
then
C
⊆
A
∩
B
{\displaystyle C\subseteq A\cap B}
The following are equivalent:
A
⊆
B
{\displaystyle A\subseteq B}
A
∩
B
=
A
{\displaystyle A\cap B=A}
A
∪
B
=
B
{\displaystyle A\cup B=B}
A
∖
B
=
∅
{\displaystyle A\setminus B=\varnothing }
B
C
⊆
A
C
{\displaystyle B^{C}\subseteq A^{C}}
Some relationships involving complements [ edit ]
Assume that
A
,
B
,
C
⊆
X
.
{\displaystyle A,B,C\subseteq X.}
De Morgan's laws :
(
A
∪
B
)
C
=
A
C
∩
B
C
{\displaystyle (A\cup B)^{C}=A^{C}\cap B^{C}}
(
A
∩
B
)
C
=
A
C
∪
B
C
{\displaystyle (A\cap B)^{C}=A^{C}\cup B^{C}}
Double complement or involution law:
(
A
C
)
C
=
A
{\displaystyle {(A^{C})}^{C}=A}
Complement laws for the universe set and the empty set:
∅
C
=
X
{\displaystyle \varnothing ^{C}=X}
X
C
=
∅
{\displaystyle X^{C}=\varnothing }
Uniqueness of complements:
If
A
∪
B
=
X
{\displaystyle A\cup B=X}
and
A
∩
B
=
∅
{\displaystyle A\cap B=\varnothing }
then
B
=
A
C
{\displaystyle B=A^{C}}
Algebra of relative complements
(
C
∖
B
)
∪
A
=
(
C
∪
A
)
∖
(
B
∖
A
)
=
(
C
∖
(
B
∪
A
)
)
∪
A
(the outermost union is disjoint)
{\displaystyle {\begin{alignedat}{2}\left(C\setminus B\right)\cup A&=\left(C\cup A\right)\setminus \left(B\setminus A\right)\\&=\left(C\setminus \left(B\cup A\right)\right)\cup A\;\;\;\;\;\;{\text{ (the outermost union is disjoint) }}\\\end{alignedat}}}
(
C
∖
B
)
∩
A
=
(
C
∩
A
)
∖
B
=
C
∩
(
A
∖
B
)
{\displaystyle {\begin{alignedat}{2}(C\setminus B)\cap A&=(C\cap A)\setminus B\\&=C\cap (A\setminus B)\\\end{alignedat}}}
(
C
∖
B
)
∖
A
=
(
C
∖
B
)
∩
(
C
∖
A
)
=
C
∖
(
B
∪
A
)
{\displaystyle {\begin{alignedat}{2}(C\setminus B)\setminus A&=(C\setminus B)\cap (C\setminus A)\\&=C\setminus (B\cup A)\\\end{alignedat}}}
C
∖
(
B
∩
A
)
=
(
C
∖
B
)
∪
(
C
∖
A
)
{\displaystyle C\setminus (B\cap A)=(C\setminus B)\cup (C\setminus A)}
C
∖
(
B
∖
A
)
=
(
C
∖
B
)
∪
(
C
∩
A
)
{\displaystyle C\setminus (B\setminus A)=\left(C\setminus B\right)\cup \left(C\cap A\right)}
So if
C
⊆
B
{\displaystyle C\subseteq B}
then
C
∖
(
B
∖
A
)
=
C
∩
A
{\displaystyle C\setminus (B\setminus A)=C\cap A}
A
C
=
X
∖
A
{\displaystyle A^{C}=X\setminus A}
(by definition of this notation)
B
∖
A
=
A
C
∩
B
{\displaystyle B\setminus A=A^{C}\cap B}
(
B
∖
A
)
C
=
A
∪
B
C
{\displaystyle (B\setminus A)^{C}=A\cup B^{C}}
A
∖
∅
=
A
{\displaystyle A\setminus \varnothing =A}
∅
=
A
∖
A
=
∅
∖
A
=
A
∖
X
{\displaystyle {\begin{alignedat}{2}\varnothing &=A\setminus A\\&=\varnothing \setminus A\\&=A\setminus X\\\end{alignedat}}}
Intersection and unions of arbitrary families of sets [ edit ]
Let
(
S
i
,
j
)
(
i
,
j
)
∈
I
×
J
{\displaystyle \left(S_{i,j}\right)_{(i,j)\in I\times J}}
be a families of sets.
⋃
i
∈
I
(
⋂
j
∈
J
S
i
,
j
)
⊆
⋂
j
∈
J
(
⋃
i
∈
I
S
i
,
j
)
{\displaystyle \bigcup _{i\in I}\left(\bigcap _{j\in J}S_{i,j}\right)\subseteq \bigcap _{j\in J}\left(\bigcup _{i\in I}S_{i,j}\right)}
⋃
i
∈
I
(
⋃
j
∈
J
S
i
,
j
)
=
⋃
j
∈
J
(
⋃
i
∈
I
S
i
,
j
)
{\displaystyle \bigcup _{i\in I}\left(\bigcup _{j\in J}S_{i,j}\right)=\bigcup _{j\in J}\left(\bigcup _{i\in I}S_{i,j}\right)}
⋂
i
∈
I
(
⋂
j
∈
J
S
i
,
j
)
=
⋂
j
∈
J
(
⋂
i
∈
I
S
i
,
j
)
{\displaystyle \bigcap _{i\in I}\left(\bigcap _{j\in J}S_{i,j}\right)=\bigcap _{j\in J}\left(\bigcap _{i\in I}S_{i,j}\right)}
∏
j
∈
J
(
⋂
i
∈
I
S
i
,
j
)
=
⋂
i
∈
I
(
∏
j
∈
J
S
i
,
j
)
{\displaystyle \prod _{j\in J}\left(\bigcap _{i\in I}S_{i,j}\right)=\bigcap _{i\in I}\left(\prod _{j\in J}S_{i,j}\right)}
In particular,
(
∏
i
∈
I
A
i
)
∩
(
∏
i
∈
I
B
i
)
=
∏
i
∈
I
(
A
i
∩
B
i
)
{\displaystyle \left(\prod _{i\in I}A_{i}\right)\cap \left(\prod _{i\in I}B_{i}\right)=\prod _{i\in I}\left(A_{i}\cap B_{i}\right)}
(
⋃
i
∈
I
A
i
)
∩
B
=
⋃
i
∈
I
(
A
i
∩
B
)
{\displaystyle \left(\bigcup _{i\in I}A_{i}\right)\cap B=\bigcup _{i\in I}\left(A_{i}\cap B\right)}
(
⋃
i
∈
I
A
i
)
∩
(
⋃
j
∈
J
B
j
)
=
⋃
i
∈
I
,
j
∈
J
(
A
i
∩
B
j
)
{\displaystyle \left(\bigcup _{i\in I}A_{i}\right)\cap \left(\bigcup _{j\in J}B_{j}\right)=\bigcup _{i\in I,j\in J}\left(A_{i}\cap B_{j}\right)}
More generally, suppose that for each
i
∈
I
,
{\displaystyle i\in I,}
J
i
{\displaystyle J_{i}}
is some non-empty index set and for each
j
∈
J
i
,
{\displaystyle j\in J_{i},}
S
i
,
j
{\displaystyle S_{i,j}}
is a set. Let
F
{\displaystyle {\mathcal {F}}}
be the set of all functions
f
{\displaystyle f}
on
I
{\displaystyle I}
such that for each
i
∈
I
,
{\displaystyle i\in I,}
f
(
i
)
∈
J
i
,
{\displaystyle f(i)\in J_{i},}
(note that if all
J
i
{\displaystyle J_{i}}
are equal to some set, call it
J
,
{\displaystyle J,}
then
F
=
J
I
{\displaystyle {\mathcal {F}}=J^{I}}
). Then
⋂
i
∈
I
[
⋃
j
∈
J
i
S
i
,
j
]
=
⋃
f
∈
F
[
⋂
i
∈
I
S
i
,
f
(
i
)
]
{\displaystyle \bigcap _{i\in I}\left[\bigcup _{j\in J_{i}}S_{i,j}\right]=\bigcup _{f\in {\mathcal {F}}}\left[\bigcap _{i\in I}S_{i,f(i)}\right]}
Let
f
:
X
→
Y
{\displaystyle f:X\to Y}
be any function, where we denote its domain
X
{\displaystyle X}
by
domain
(
f
)
{\displaystyle \operatorname {domain} (f)}
and denote its codomain
Y
{\displaystyle Y}
by
codomain
(
f
)
.
{\displaystyle \operatorname {codomain} (f).}
Many of the identities below do not actually require that the sets be somehow related to
f
{\displaystyle f}
's domain or codomain (i.e. to
X
{\displaystyle X}
or
Y
{\displaystyle Y}
) so when some kind of relationship is necessary then it will be clearly indicated.
Because of this, in this article, if S is declared to be "any set ," and it is not indicated that
S
{\displaystyle S}
must be somehow related to
X
{\displaystyle X}
or
Y
{\displaystyle Y}
(say for instance, that it be a subset
X
{\displaystyle X}
or
Y
{\displaystyle Y}
) then it is meant that
S
{\displaystyle S}
is truly arbitrary.
So, for instance, it's even possible that
S
∩
(
X
∪
Y
)
=
∅
,
{\displaystyle S\cap (X\cup Y)=\varnothing ,}
or that
S
∩
X
≠
∅
{\displaystyle S\cap X\neq \varnothing }
and
S
∩
Y
≠
∅
{\displaystyle S\cap Y\neq \varnothing }
(which happens, for instance, if
X
=
Y
{\displaystyle X=Y}
), etc.
If S is any set then by definition,
f –1 (S ) ≝ { x ∈ domain( f ) : f (x ) ∈ S }
and
f (S ) ≝ { f (s ) : s ∈ S ∩ domain( f ) }
Denote the image (or range ) of
f
:
X
→
Y
,
{\displaystyle f:X\to Y,}
which is the set
f
(
domain
(
f
)
)
=
f
(
X
)
,
{\displaystyle f(\operatorname {domain} (f))=f(X),}
by
Im
(
f
)
{\displaystyle \operatorname {Im} (f)}
or
image
(
f
)
:
{\displaystyle \operatorname {image} (f):}
Im
(
f
)
:=
f
(
domain
(
f
)
)
=
f
(
X
)
=
{
f
(
x
)
:
x
∈
domain
(
f
)
=
X
}
.
{\displaystyle \operatorname {Im} (f)~:=~f(\operatorname {domain} (f))~=~f(X)~=~\{f(x)~:~x\in \operatorname {domain} (f)=X\}.}
The restriction of a
f
:
X
→
Y
{\displaystyle f:X\to Y}
to
S
,
{\displaystyle S,}
denoted by
f
|
S
,
{\displaystyle f{\big \vert }_{S},}
is defined to be the map
f
|
S
:
S
∩
domain
(
f
)
→
Y
{\displaystyle f{\big \vert }_{S}~:~S\cap \operatorname {domain} (f)~\to ~Y}
with domain
S
∩
domain
(
f
)
{\displaystyle S\cap \operatorname {domain} (f)}
that is defined by sending
x
∈
S
∩
domain
(
f
)
{\displaystyle x\in S\cap \operatorname {domain} (f)}
to
f
(
x
)
;
{\displaystyle f(x);}
that is,
f
|
S
(
x
)
=
f
(
x
)
.
{\displaystyle f{\big \vert }_{S}\left(x\right)=f(x).}
A set
S
{\displaystyle S}
is said to be
f
{\displaystyle f}
-saturated or simply saturated if
S
=
f
−
1
(
f
(
S
)
)
,
{\displaystyle S=f^{-1}(f(S)),}
which is only possible if
S
⊆
domain
(
f
)
.
{\displaystyle S\subseteq \operatorname {domain} (f).}
Throughout,
f
:
X
→
Y
{\displaystyle f:X\to Y}
will be a map,
R
,
S
⊆
X
,
{\displaystyle R,S\subseteq X,}
and
T
,
U
⊆
Y
.
{\displaystyle T,U\subseteq Y.}
Let
f
:
X
→
Y
{\displaystyle f:X\to Y}
be any function.
Let
R
,
S
,
{\displaystyle R,S,}
and
T
{\displaystyle T}
be completely arbitrary sets. Assume
A
⊆
X
{\displaystyle A\subseteq X}
and
C
⊆
Y
.
{\displaystyle C\subseteq Y.}
Image
Preimage
Additional assumptions on sets
f
(
S
)
=
f
(
S
∩
domain
f
)
=
f
(
S
∩
X
)
{\displaystyle {\begin{alignedat}{4}f\left(S\right)&=f\left(S\cap \operatorname {domain} f\right)\\&=f\left(S\cap X\right)\end{alignedat}}}
f
−
1
(
S
)
=
f
−
1
(
S
∩
Im
f
)
=
f
−
1
(
S
∩
Y
)
{\displaystyle {\begin{alignedat}{4}f^{-1}\left(S\right)&=f^{-1}\left(S\cap \operatorname {Im} f\right)\\&=f^{-1}\left(S\cap Y\right)\end{alignedat}}}
None
f
(
S
)
⊆
Y
{\displaystyle f\left(S\right)\subseteq Y}
f
−
1
(
S
)
=
X
{\displaystyle f^{-1}\left(S\right)=X}
if and only if
Im
f
⊆
S
{\displaystyle \operatorname {Im} f\subseteq S}
None
f
(
X
)
=
Im
f
⊆
Y
{\displaystyle f(X)=\operatorname {Im} f\subseteq Y}
f
−
1
(
Y
)
=
X
f
−
1
(
Im
f
)
=
X
{\displaystyle {\begin{alignedat}{4}f^{-1}(Y)&=X\\f^{-1}\left(\operatorname {Im} f\right)&=X\end{alignedat}}}
None
f
(
S
)
=
∅
{\displaystyle f(S)=\varnothing }
if and only if
S
∩
domain
f
=
∅
{\displaystyle S\cap \operatorname {domain} f=\varnothing }
f
−
1
(
S
)
=
∅
{\displaystyle f^{-1}(S)=\varnothing }
if and only if
S
∩
Im
f
=
∅
{\displaystyle S\cap \operatorname {Im} f=\varnothing }
None
f
(
A
)
=
∅
{\displaystyle f(A)=\varnothing }
if and only if
A
=
∅
{\displaystyle A=\varnothing }
f
−
1
(
C
)
=
∅
{\displaystyle f^{-1}(C)=\varnothing }
if and only if
C
⊆
Y
∖
Im
f
{\displaystyle C\subseteq Y\setminus \operatorname {Im} f}
A
⊆
X
{\displaystyle A\subseteq X}
and
C
⊆
Y
{\displaystyle C\subseteq Y}
Im
f
∖
f
(
S
)
=
f
(
X
)
∖
f
(
S
)
⊆
f
(
X
∖
S
)
{\displaystyle \operatorname {Im} f\setminus f(S)=f(X)\setminus f(S)~\subseteq ~f\left(X\setminus S\right)}
X
∖
f
−
1
(
S
)
=
f
−
1
(
Y
∖
S
)
=
f
−
1
(
Y
∖
[
S
∩
Im
f
]
)
{\displaystyle {\begin{alignedat}{4}X\setminus f^{-1}(S)&=f^{-1}\left(Y\setminus S\right)\\&=f^{-1}\left(Y\setminus \left[S\cap \operatorname {Im} f\right]\right)\end{alignedat}}}
[ note 3]
None
Im
f
=
f
(
X
)
=
f
(
S
)
∪
f
(
X
∖
S
)
{\displaystyle \operatorname {Im} f=f(X)~=~f(S)\cup f\left(X\setminus S\right)}
X
=
f
−
1
(
S
)
∪
f
−
1
(
Y
∖
S
)
=
f
−
1
(
S
)
∪
f
−
1
(
Im
f
∖
S
)
{\displaystyle {\begin{alignedat}{4}X&=f^{-1}\left(S\right)\cup f^{-1}\left(Y\setminus S\right)\\&=f^{-1}\left(S\right)\cup f^{-1}\left(\operatorname {Im} f\setminus S\right)\end{alignedat}}}
None
f
(
T
)
=
f
(
S
)
∪
f
(
T
∖
S
)
{\displaystyle f(T)~=~f(S)\cup f\left(T\setminus S\right)}
f
−
1
(
T
)
=
f
−
1
(
S
)
∪
f
−
1
(
T
∖
S
)
=
f
−
1
(
S
)
∪
f
−
1
(
(
Im
f
∩
T
)
∖
S
)
{\displaystyle {\begin{alignedat}{4}f^{-1}\left(T\right)&=f^{-1}\left(S\right)\cup f^{-1}\left(T\setminus S\right)\\&=f^{-1}\left(S\right)\cup f^{-1}\left(\left(\operatorname {Im} f\cap T\right)\setminus S\right)\end{alignedat}}}
None
f
(
S
)
⊇
C
{\displaystyle f(S)\supseteq C}
if and only if there exists
B
⊆
S
{\displaystyle B\subseteq S}
such that
f
(
B
)
=
C
{\displaystyle f(B)=C}
f
−
1
(
S
)
⊇
A
{\displaystyle f^{-1}(S)\supseteq A}
if and only if
f
(
A
)
⊆
S
{\displaystyle f(A)\subseteq S}
A
⊆
X
{\displaystyle A\subseteq X}
and
C
⊆
Y
{\displaystyle C\subseteq Y}
f
(
A
)
⊇
f
(
X
∖
A
)
{\displaystyle f(A)~\supseteq ~f\left(X\setminus A\right)}
if and only if
f
(
A
)
=
Im
f
{\displaystyle f(A)=\operatorname {Im} f}
f
−
1
(
C
)
⊇
f
−
1
(
Y
∖
C
)
{\displaystyle f^{-1}(C)~\supseteq ~f^{-1}\left(Y\setminus C\right)}
if and only if
f
−
1
(
C
)
=
X
{\displaystyle f^{-1}(C)=X}
A
⊆
X
{\displaystyle A\subseteq X}
and
C
⊆
Y
{\displaystyle C\subseteq Y}
(
g
∘
f
)
(
S
)
=
g
(
f
(
S
)
)
{\displaystyle (g\circ f)(S)~=~g(f(S))}
(
g
∘
f
)
−
1
(
S
)
=
f
−
1
(
g
−
1
(
S
)
)
{\displaystyle \left(g\circ f\right)^{-1}\left(S\right)~=~f^{-1}\left(g^{-1}(S)\right)}
f
{\displaystyle f}
and
g
{\displaystyle g}
are functions such that
Im
f
⊆
domain
g
{\displaystyle \operatorname {Im} f\subseteq \operatorname {domain} g}
.
Also:
f
(
S
)
∩
T
=
∅
{\displaystyle f(S)\cap T=\varnothing }
if and only if
S
∩
f
−
1
(
T
)
=
∅
.
{\displaystyle S\cap f^{-1}\left(T\right)=\varnothing .}
When preimages preserve
⊆
{\displaystyle \subseteq }
: If
C
⊆
Im
f
{\displaystyle C~\subseteq ~\operatorname {Im} f}
then
f
−
1
(
C
)
⊆
f
−
1
(
T
)
{\displaystyle f^{-1}(C)~\subseteq ~f^{-1}(T)}
if and only if
C
⊆
T
.
{\displaystyle C~\subseteq ~T.}
Images of preimages and preimages of images
Let
S
{\displaystyle S}
and
T
{\displaystyle T}
be arbitrary sets,
f
:
X
→
Y
{\displaystyle f:X\rightarrow Y}
be any map, and let
A
⊆
X
{\displaystyle A\subseteq X}
and
C
⊆
Y
{\displaystyle C\subseteq Y}
.
Infinitely many sets [ edit ]
Images and preimages of unions and intersections
Images and preimages of unions are always preserved. Inverse images preserve both unions and intersections. It is only images of intersections that are not always preserved.
If
(
S
i
)
i
∈
I
{\displaystyle \left(S_{i}\right)_{i\in I}}
is a family of arbitrary sets indexed by
I
≠
∅
{\displaystyle I\neq \varnothing }
then:
f
−
1
(
⋂
i
∈
I
S
i
)
=
⋂
i
∈
I
f
−
1
(
S
i
)
f
−
1
(
⋃
i
∈
I
S
i
)
=
⋃
i
∈
I
f
−
1
(
S
i
)
f
(
⋃
i
∈
I
S
i
)
=
⋃
i
∈
I
f
(
S
i
)
f
(
⋂
i
∈
I
S
i
)
⊆
⋂
i
∈
I
f
(
S
i
)
{\displaystyle {\begin{alignedat}{2}f^{-1}\left(\bigcap _{i\in I}S_{i}\right)&~=~\bigcap _{i\in I}f^{-1}\left(S_{i}\right)\\f^{-1}\left(\bigcup _{i\in I}S_{i}\right)&~=~\bigcup _{i\in I}f^{-1}\left(S_{i}\right)\\f\left(\bigcup _{i\in I}S_{i}\right)&~=~\bigcup _{i\in I}f\left(S_{i}\right)\\f\left(\bigcap _{i\in I}S_{i}\right)&~\subseteq ~\bigcap _{i\in I}f\left(S_{i}\right)\\\end{alignedat}}}
If all
S
i
{\displaystyle S_{i}}
are
f
{\displaystyle f}
-saturated then
⋂
i
∈
I
S
i
{\displaystyle \bigcap _{i\in I}S_{i}}
be will be
f
{\displaystyle f}
-saturated and equality will hold in the last relation below. Explicitly, this means:
f
(
⋂
i
∈
I
S
i
)
=
⋂
i
∈
I
f
(
S
i
)
{\displaystyle f\left(\bigcap _{i\in I}S_{i}\right)~=~\bigcap _{i\in I}f\left(S_{i}\right)}
IF
X
∩
S
i
=
f
−
1
(
f
(
S
i
)
)
{\displaystyle X\cap S_{i}=f^{-1}(f(S_{i}))}
for all
i
∈
I
.
{\displaystyle i\in I.}
If
(
A
i
)
i
∈
I
{\displaystyle \left(A_{i}\right)_{i\in I}}
is a family of arbitrary subsets of
X
=
domain
f
,
{\displaystyle X=\operatorname {domain} f,}
which means that
A
i
⊆
X
{\displaystyle A_{i}\subseteq X}
for all
i
,
{\displaystyle i,}
then this becomes:
f
(
⋂
i
∈
I
A
i
)
=
⋂
i
∈
I
f
(
A
i
)
{\displaystyle f\left(\bigcap _{i\in I}A_{i}\right)~=~\bigcap _{i\in I}f\left(A_{i}\right)}
IF
A
i
=
f
−
1
(
f
(
A
i
)
)
{\displaystyle A_{i}=f^{-1}(f(A_{i}))}
for all
i
∈
I
.
{\displaystyle i\in I.}
Preimage from a Cartesian product
This subsection will describe the preimage of a subset
B
⊆
∏
j
∈
J
Y
j
{\displaystyle B\subseteq \prod _{j\in J}Y_{j}}
under a map of the form
F
:
X
→
∏
j
∈
J
Y
j
.
{\displaystyle F~:~X~\to ~\prod _{j\in J}Y_{j}.}
For every
k
∈
J
,
{\displaystyle k\in J,}
let
π
k
:
∏
j
∈
J
Y
j
→
Y
k
{\displaystyle \pi _{k}~:~\prod _{j\in J}Y_{j}~\to ~Y_{k}}
denote the canonical projection onto
Y
k
,
{\displaystyle Y_{k},}
and
let
F
k
:=
π
k
∘
F
:
X
→
Y
k
{\displaystyle F_{k}~:=~\pi _{k}\circ F~:~X~\to ~Y_{k}}
so that
F
=
(
F
j
)
j
∈
J
,
{\displaystyle F~=~\left(F_{j}\right)_{j\in J},}
which is also the unique map satisfying:
π
j
∘
F
=
F
j
{\displaystyle \pi _{j}\circ F=F_{j}}
for all
j
∈
J
.
{\displaystyle j\in J.}
The map
(
F
j
)
j
∈
J
:
X
→
∏
j
∈
J
Y
j
{\displaystyle \left(F_{j}\right)_{j\in J}~:~X~\to ~\prod _{j\in J}Y_{j}}
should not be confused with the Cartesian product
∏
j
∈
J
F
j
{\displaystyle \prod _{j\in J}F_{j}}
of these maps, which is the map
∏
j
∈
J
F
j
:
∏
j
∈
J
X
→
∏
j
∈
J
Y
j
{\displaystyle \prod _{j\in J}F_{j}~:~\prod _{j\in J}X~\to ~\prod _{j\in J}Y_{j}}
defined by sending
(
x
j
)
j
∈
J
∈
∏
j
∈
J
X
{\displaystyle \left(x_{j}\right)_{j\in J}\in \prod _{j\in J}X}
to
(
F
j
(
x
j
)
)
j
∈
J
.
{\displaystyle \left(F_{j}\left(x_{j}\right)\right)_{j\in J}.}
^ Here "smallest" means relative to subset containment. So if
Φ
{\displaystyle \Phi }
is any algebra of sets containing
S
,
{\displaystyle {\mathcal {S}},}
then
Φ
S
⊆
Φ
.
{\displaystyle \Phi _{\mathcal {S}}\subseteq \Phi .}
^ Since
S
≠
∅
,
{\displaystyle {\mathcal {S}}\neq \varnothing ,}
there is some
S
∈
S
0
{\displaystyle S\in {\mathcal {S}}_{0}}
such that its complement also belongs to
S
0
.
{\displaystyle {\mathcal {S}}_{0}.}
The intersection of these two sets implies that
∅
∈
S
1
.
{\displaystyle \varnothing \in {\mathcal {S}}_{1}.}
The union of these two sets is equal to
X
,
{\displaystyle X,}
which implies that
X
∈
Φ
S
.
{\displaystyle X\in \Phi _{\mathcal {S}}.}
^ The conclusion
X
∖
f
−
1
(
S
)
=
f
−
1
(
Y
∖
S
)
{\displaystyle X\setminus f^{-1}(S)=f^{-1}\left(Y\setminus S\right)}
can also be written as:
f
−
1
(
T
)
C
=
f
−
1
(
T
C
)
.
{\displaystyle f^{-1}(T)^{\operatorname {C} }~=~f^{-1}\left(T^{\operatorname {C} }\right).}
^ Note that this condition
T
=
f
−
1
(
f
(
T
)
)
{\displaystyle T=f^{-1}(f(T))}
depends entirely on
T
{\displaystyle T}
and not on
S
.
{\displaystyle S.}
^
f
(
X
∖
S
)
⊇
Y
∖
f
(
S
)
{\displaystyle f\left(X\setminus S\right)~\supseteq ~Y\setminus f(S)}
can be rewritten as:
f
(
S
C
)
⊇
f
(
S
)
C
.
{\displaystyle f\left(S^{\operatorname {C} }\right)~\supseteq ~f\left(S\right)^{\operatorname {C} }.}
Artin, Michael (1991). Algebra . Prentice Hall. ISBN 81-203-0871-9 .
Blyth, T.S. (2005). Lattices and Ordered Algebraic Structures . Springer. ISBN 1-85233-905-5 . .
Courant, Richard, Herbert Robbins, Ian Stewart, What is mathematics?: An Elementary Approach to Ideas and Methods , Oxford University Press US, 1996. ISBN 978-0-19-510519-3 . "SUPPLEMENT TO CHAPTER II THE ALGEBRA OF SETS" .
Dixmier, Jacques (1984). General Topology . Undergraduate Texts in Mathematics. Translated by Berberian, S. K. New York: Springer-Verlag . ISBN 978-0-387-90972-1 . OCLC 10277303 .
Dolecki, Szymon ; Mynard, Frédéric (2016). Convergence Foundations Of Topology . New Jersey: World Scientific Publishing Company. ISBN 978-981-4571-52-4 . OCLC 945169917 .
Dugundji, James (1966). Topology . Boston: Allyn and Bacon. ISBN 978-0-697-06889-7 . OCLC 395340485 .
Halmos, Paul R. (1960). Naive set theory . The University Series in Undergraduate Mathematics. van Nostrand Company. Zbl 0087.04403 .
Joshi, K. D. (1983). Introduction to General Topology . New York: John Wiley and Sons Ltd. ISBN 978-0-85226-444-7 . OCLC 9218750 .
Kelley, John L. (1985). General Topology . Graduate Texts in Mathematics . Vol. 27 (2 ed.). Birkhäuser. ISBN 978-0-387-90125-1 .
Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I . Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2 . MR 0248498 . OCLC 840293704 .
Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River, NJ : Prentice Hall, Inc . ISBN 978-0-13-181629-9 . OCLC 42683260 .
Schechter, Eric (1996). Handbook of Analysis and Its Foundations . San Diego, CA: Academic Press. ISBN 978-0-12-622760-4 . OCLC 175294365 .
Schubert, Horst (1968). Topology . London: Macdonald & Co. ISBN 978-0-356-02077-8 . OCLC 463753 .
Stoll, Robert R.; Set Theory and Logic , Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4 . "The Algebra of Sets", pp 16—23 .
Willard, Stephen (2004) [1970]. General Topology . Mineola, N.Y. : Dover Publications . ISBN 978-0-486-43479-7 . OCLC 115240 .
Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River, NJ : Prentice Hall, Inc . ISBN 978-0-13-181629-9 . OCLC 42683260 .